
Python
Workshop Day 2

Coding Pals | UBC Edith
Lando

Homework

i. CCC13J1

ii. CCC16J1

iii. CCC20J2

Review

if Statements
Example:

flag = True

if True:
 print("Welcome")
 print("To")
 print("Coding Pals")

Output:
Welcome
To
Coding Pals

elif Statements
The elif keyword is pythons way of saying "if the previous conditions were not true, then try this condition".

a = 33

b = 33

if b > a:

 print("b is greater than a")

elif a == b:

 print("a and b are equal")

else Statements
The else keyword catches anything which isn't caught by the preceding conditions.

a = 200

b = 33

if b > a:

 print("b is greater than a")

elif a == b:

 print("a and b are equal")

else:

 print("a is greater than b")

How to use While Loops
In order to use While loops, you need to declare it in a way similar to If statements. The most basic method
requires an integer, which is increased each time the loop repeats until it no longer matches the loop
condition.

In the following code, the number 4 is printed out 4 times.

n = 1

while n < 5:

 print(4)

 n += 1

How to use For Loops
The most basic way to use “For loops” is to use it with the range() function. range() starts at 0 by
default, increases by 1, and returns each number until an end number. Remember: Python
numbering makes it so that the real end number is one less!

The following code prints all the numbers from 0 to 5.

for x in range(6):

 print(x)

for x in range(0,6):

 print(x)

What are Strings?
In Python, strings are sequences of characters. Characters, simply put, are just any symbols
or numbers. Strings are a data type, just like integers.

Strings are especially useful in coding assignments, since you may be required to store
important words and numbers and retrieve it for later use.

How do we use Strings?
In most cases, you will need to declare your strings at the very top of your code. To do this, you will
need a name for your string. You will also need to indicate that it is a string with quotation marks.

The following code consists of a string assigned “Hello”, which is then printed out with the print
function.

string = “Hello”

print(string)

What is Slicing?
One useful tool to use when it comes to strings is slicing. Slicing is when you only refer to
smaller sections of a string. Slicing occurs in this format: s[start:end].

The end index is not included.

The following code consists the same string that has been sliced and printed to only show the
letters “el”. So we start at index 1 and we stop at index 3.

string = “Hello”

print(string[1:3])

How do we get String Length?

In many cases, it may be important to get the length of the string. To do this, simply use the
len() function.

The following code consists the same string, with the length printed out.

string = “Hello”

print(len(string))

Check String
To check if a certain phrase or character is present in a string, we can use the keywords in or not in

sentence = "The rain in Spain stays mainly in the plain"
check = "ain" in sentence
print(check)

x= "Andrew is a cool kid"
if ”cool kid” in x:

print(“yes”)
else:

print(“no”)

Combining Strings
To concatenate (technical term for combine) two strings you can use the + operator.

a = "Hello"
b = "World"
c = a + b
print(c)

Additional Methods Part 1
The lower() method will return the
string with all lowercase letters.

string = “Hello”

print(string.lower())

hello

The upper() method will return the
string with all uppercase letters.

string = “Hello”

print(string.upper())

HELLO

Additional Methods Part 2
The strip() method removes any
whitespace from the beginning or the
end:

a = " Hello, World! "

print(a.strip()) # returns
"Hello, World!"

The replace() method replaces a string
with another string:

a = "Hello, World!"

print(a.replace("H", "J"))

Jello, World

Example Question: CCC’2013 Junior 2

● We will do a step to step tutorial right now

● Link to problem

https://dmoj.ca/problem/ccc13j2

Break!

What is a list?
A way to store multiple values in a variable

A way to group similar information together under the same name

Like a to-do list

What do lists look like in python?
Sticking with the to-do list example:

todo = ["log on to computer", "join zoom call", "learn about python lists"]

This creates a list called “todo” that stores 3 strings

You can also separate the elements on new lines because python ignores
whitespace inside lists.

todo = [
"log on to computer",
"join zoom call",
"learn about python lists"

]

What do lists look like in python?
The elements in python lists don’t have to be the same data type

For example

l = [1, 1.5, ”1.5”]

is a valid python list

How do I access elements in a list
todo = ["log on to computer", "join zoom call", "learn about python lists"]

Earlier we had this list, how do we access each item?

The easiest way is to tell python which place the element comes in the list

E.g. I want the element in the first/second/third place

Keeping in mind that python counts from 0, so the first element is the 0th index.

>>> print(todo[0])
log on to computer
>>> print(todo[1])
join zoom call

How do I access elements in a list
You can also access multiple elements through the use of list slices

>>> l = [1, 2, 3, 4]
>>> print(l[1:3])
[2, 3]
>>> print(l[:2])
[1, 2]
>>> print(l[2:])
[3, 4]
>>> print(l[::2])
[1, 3]

Leaving the start or the end blank defaults to the first and last elements of the list

Adding elements
To add an element to a list use the append method

>>> l = [1, 2, 3]
>>> l.append(4)
>>> print(l)
[1, 2, 3, 4]

To add a list to the end of a list use the extend method
>>> l = [1, 2, 3]
>>> l.extend([4, 5, 6])
>>> print(l)
[1, 2, 3, 4, 5, 6]

Removing elements
To remove an element by its index (e.g. to remove the first, second, etc. item) use the del
keyword

>>> l = [1, 2, 3]
>>> del l[1]
>>> print(l)
[1, 3]

>>> l = [“a”, “b”, “c”, “d”]
>>> del l[1:3]
>>> print(l)
[“a”, “d”]

Removing elements
To remove an element by its value (e.g. remove the string “hello” from a list) use
the remove method

>>> l = [1, 2, 3]

>>> l.remove(2)

>>> print(l)

[1, 3]

Finding the length of a list
You can use the len function to find the length of a list

>>> l = [1, 2, 3]

>>> print(len(l))

3

Change List Value
To change the value of a specific item, refer to the index number

thislist = ["apple", "banana", "cherry"]

thislist[1] = "blackcurrant"

print(thislist)

["apple", "blackcurrant", "cherry"]

Check if item exists
To determine if a specified item is present in a list use the in keyword

thislist = ["apple", "banana", "cherry"]

if "apple" in thislist:

 print("Yes, 'apple' is in the fruits list")

Sorting a list
Python provides a sort method for lists

>>> l = [2, 1, 3]
>>> l.sort()
>>> print(l)
[1, 2, 3]

To avoid modifying the original list you can use the sorted function
>>> l = [2, 1, 3]
>>> print(sorted(l))
[1, 2, 3]
>>> print(l)
[2, 1, 3]

Iterating through a list: index referencing
With the for loop we can set the range to be the size of the list or string and reference the index when
we print each letter. This works because the iterator “i” will increase from 0 to the size of the list with
every iteration of the loop.

Example 1:
fruits = ["apple", "banana", "cherry"]
for i in range(len(fruits)):
 print(fruits[i])

Example 2:
name = “Prad”
for i in range(len(name)):
 print(name[i])

Iterating through a list: for each loop
Using the for-each loop, we change the iterator i to reference each element in the list or string directly

Example 1:
fruits = ["apple", "banana", "cherry"]
for i in fruits:
 print(i)

Example 2:
name = “Prad”
for i in name:
 print(i)

Notice how you do not need to use fruits[i] or name[i] and can instead print “i” directly

List Methods
The pop() method removes the specified

index, (or the last item if index is not

specified)

thislist = ["apple", "banana",

"cherry"]

thislist.pop()

print(thislist)

The clear() method empties the list

thislist = ["apple", "banana",

"cherry"]

thislist.clear()

print(thislist)

List Methods
The reverse() method reverses the sorting

order of the elements

fruits = ['apple', 'banana',

'cherry']

fruits.reverse()

The index() method returns the position at

the first occurrence of the specified value.

fruits = ['apple', 'banana',

'cherry']

x = fruits.index("cherry")

What are functions?

A function is a set of statements that might take inputs,
does some specific computation and produces output.

What do functions look like?
Functions Structure:
def <function name> (parameter list):

<statements>
A function is defined using the keyword def

Function name is used when calling the function

The parameter list is used for information that needs to be passed into the
function(ie. list, strings, integers)

The statements are the operations that occur

Why use functions?
You can use a function anytime you need to do a set of operations multiple times.
Functions help reduce duplication in your code and breaks the code down into
simpler pieces.

Number of Parameters
By default, a function must be called with the correct number of parameters. Meaning that if your
function expects 2 parameters, you have to call the function with 2 parameters, not more, and not less.

This function expects 2 arguments, and gets 2 arguments:

def my_function(fname, lname):
 print(fname + " " + lname)

my_function("Kevin", "Guo")

Function return and calling a function
1. If the function has: return variable/ number

a. print(myfunction())

2. If the function has: return True/False
a. print(myfunction())

3. If the function contains: print(variable or number)
a. myfunction()

Multiple Parameters Example
A simple Python function to determine the larger of two numbers
def size(x, y):
 if x>y
 print("x is larger")
 elif x==y:

print("x and y are the same")
 else:
 print("y is larger")
size(4,7)
size(5,5)

Output:
y is larger
x and y are the same

Break!

Random Module in Python
The Random module allows us to generate random values on the computer and use

them in our code

For our Hangman game, we will have a word bank and pick a word at random from

the bank. Therefore, we need to use the random module to pick a random word

We will use the randint() function, which has two parameters and generates a

number between those two parameters (inclusive)

Ex: print(random.randint(0,10)) #prints a random integer between 0 and 10

Hangman
Follow along in your own repl!

Hangman Game
Hangman game reference: https://replit.com/@davisc3126/HangmanPython

https://replit.com/@davisc3126/HangmanPython

The End!
Feel free to reach out with any

questions!

